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This paper treats the kinematics of particles advected passively by flow of an 
incompressible fluid. It is shown that for steady irrotational flow without circulation, 
and for many monochromatic waves in a fluid the particle paths are not chaotic, i.e. 
do not depend sensitively on initial conditions. However, if the flow is a time-periodic 
potential flow or a superposition of waves then the particle paths may be chaotic. 
This is shown by the application of the theory of Melnikov to the breakup of a 
heteroclinic orbit (which connects two stagnation points and may bound a region of 
closed streamlines) and the onset of chaos in two examples of two-dimensional flow. 
The first example is a simple unbounded irrotational flow comprising a steady flow 
with two stagnation points which has a time-periodic perturbation. The second 
example is of two Rossby waves with a mean zonal flow; the particle paths are 
examined geometrically and numerically, and consequences for pollutant dispersion 
are discussed in physical terms. Also the combination of the effects of chaotic 
advection and molecular diffusion on the transport of a solute are examined. 

1. Introduction 
Arnol’d (1965) and HBnon (1966) were the first to recognize that particle paths in 

a smooth laminar flow may be chaotic. This profound qualitative difference between 
the Eulerian and Lagrangian properties of a flow has surprised many experienced 
research workers in fluid mechanics. However, it is not surprising to those familiar 
with the Lorenz (1963) system, namely 

dx 
- = u and u(x) = (a@-s), rz-y--22, -bz+zy), 
dt 

if they regard the system as the equation of motion of the fluid particle at x(t) in the 
given flow with velocity u in three-dimensional physical space, rather than as an 
equation of evolution in a phase space; then the velocity field is steady, smooth and 
simple (albeit of little physical interest because of its form of compressibility) 
although the particle paths may be chaotic for certain values of the parameters a, r 
and b. This phenomenon whereby a flow is laminar and some particle paths are 
chaotic is sometimes called Lagra.ngian turbulence, but we prefer the name chaotic 
advection, coined by Aref (1984), because the flow is not turbulent. 

Arnol’d (1965), HBnon (1966) and Dombre et al. (1986) have demonstrated chaotic 
advection for Beltrami flows. We shall demonstrate it for two other important classes 
of flows - irrotational flows and waves in fluids. Although many irrotational flows are 
of little direct practical value, they are important in our understanding of flows of a 
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slightly viscous fluid. Jones & Aref (1988) have already shown that one irrotational 
flow may give rise to  chaotic advection. We shall use well-known tools of the theory 
of dynamical systems to show more generally why an irrotational flow may give rise 
to chaotic advection, and analyse an illustrative example in $2. 

Waves in fluids arise in many branches of fluid mechanics. Most of the waves are 
important physically. Many are not only simple explicit solutions of the governing 
linearized equations of motion but also exact solutions of the nonlinear equations (cf. 
Craik & Criminale 1986). Are their particle paths chaotic? We shall address this 
question in § 3, demonstrating some general as well as particular results, which 
describe the mechanism whereby waves disperse particles longitudinally. This 
mechanism may be viewed as a development of Taylor’s (1953) pioneering theory of 
the longitudinal dispersion of a solute. Again, we shall find the dispersion of a passive 
tracer due to the pseudo-randomness of the stretching and folding associated with a 
laminar flow when the particle paths are chaotic, a mechanism different but 
analogous to that in the theory of turbulent flow (cf. Batchelor 1959). We shall 
examine some of the additional effects due to molecular diffusion in $4. 

Throughout the paper we shall take each flow as given in Eulerian variables. Thus 
we shall assume the dynamics of the flow to be given and investigate some of the 
kinematics. The assumed flow may or may not have been found by linearizing the 
equations of motion : it is important to  recognize the distinction between linearization 
of the equations of motion to find the Eulerian velocity field u and the linearity of 
the field u as a function of x. Of course, the former does not imply the latter, so that 
a linearized wave field may produce chaotic advection. The geometrical arguments 
we use show that chaotic advection may occur whether, in deriving the velocity field, 
the equations of motion are linearized or not, because it is the topological character 
of the field that is important. 

2. Irrotational flow 
For an irrotational flow with velocity u = W$ the particle paths are given by 

d x  
dt 
-= wq5. 

For a steady flow the potential q5 is independent of the time t ,  and (2.1) implies that 
each fluid particle moves in the direction where q5 increases most rapidly, i.e. moves 
‘up’ the curve of steepest ascent of the equipotentials. Therefore, if there is no 
circulation, i.e. if the domain of flow is simply connected or if the domain is multiply 
connected but the flow is acyclic, the particle moves towards a maximum of $. (By 
Earnshaw’s theorem (Batchelor 1967, p. 384), for an incompressible fluid with 
V - u  = 0 this maximum must lie at a boundary of the flow, at a singularity such as 
a sink, or a t  infinity.) Thus the paths of the particles are not chaotic. 

It follows that chaotic advection for irrotational flows without circulation is 
possible only for two- or three-dimensional unsteady flows. In  a sense it is possible 
to make particle paths chaotic by specifying $ and hence u = Wq5 as a chaotic 
function o f t  for this purpose. Certainly we can make one particle follow any given 
integrable path in space by this mathematical method. Such chaos seems too 
artificial to  be of interest, and we shall soon see that chaos can arise more naturally, 
so let us suppose that $ has period T and, for definiteness and simplicity, that there 
is two-dimensional flow of an incompressible fluid. Thus we assume that $(x, y, t + T) 
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= $(x, y, t )  for all t ,  and V2$ = 0, and enquire whether chaotic particle paths are 
possible. 

First examine the streamlines $(x, y, t) = constant a t  each instant t ,  where the 
stream function $ is such that $% = -+, and $, = $.,. (Recall that a streamline of 
an unsteady flow is in general not a particle path.) The critical points of the flow are 
the stagnation points where V$ = 0. Without loss of generality, let such a point be 
instantaneously a t  the origin. Then, for a smooth flow, Maclaurin’s theorem gives 

Q, = qbo + ;(ax2 + Shxy -ay2)  + O(x3) (2.2) 

and $ = $,+&hx2-2axy-hy2)+0(x3) as x+O (2.3) 
for some functions $,, $o, a and h oft .  The critical point is therefore in general a 
saddle point with streamlines locally like rectangular hyperbolae. The topology of 
the streamlines for flow without circulation is now apparent. No streamline is closed. 
Each streamline goes to a boundary (or infinity), a saddle point or a singularity. 
There is an arbitrary number of saddle points and singularities linked by streamlines 
from one to another or to  a boundary. 

Jones & Aref (1988) have taken an irrotational two-dimensional flow with an 
oscillating source and sink and demonstrated chaos numerically, as well as other 
interesting fundamental phenomena. We shall examine another specific example in 
detail in order to investigate the possibility of chaos mathematically, identify the 
mechanism clearly and then discuss longitudinal dispersion by waves. 

So consider the family of flows with potential 

$(x9 Y, t)  = $O@> Y) + e$1(x, t), (2.4) 

where $,(x, y) = - cos z cosh y and dl(x, y, t) = y sin wt (2-5 ) 

for a given frequency o = 2n/T and parameter E .  Then 

dx 
dt dt 

= sinxcoshy and -- dy - -cosxsinh y+esinwt. (2.6) - 

The portraits of the streamlines for t = 0 (and all e ,  and also for all t when e = 0) and 
for t = n/2w, e = 0.4 are shown in figure 1 ; the streamlines for other values of t may 
be inferred by interpolation, and by extrapolation on using the system’s period 27t/w 
and symmetry under the transformation t H X / W  - t .  

We may restrict attention to the region 0 < x < 7t because the flows have period 
2x in x, and are symmetric about z=O, which is both a particle path and a 
streamline for all t and e .  To investigate the possibility of chaotic particle paths for 
6 + 0, we treat this case by perturbing the flow for e = 0, using Melnikov’s method 
(see e.g. Guckenheimer & Holmes 1983, $4.5). 

The unperturbed system, 

dx 
dt dt 
- sin x cosh y, - dy = - cos x sinh y, - _  

has a sequence of stagnation points at (nn, 0) for n = 0, k 1, & 2, .  ..with heteroclinic 
orbits between adjacent points. These stagnation points are saddle points of the 
streamlines. The orbit between ( 0 , O )  and (n, 0) is given by 

4dt) = (xo( t ) ,  YO(t)), (2.8) 
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FIGURE 1. (a )  The particle paths (2.7), which coincide with the streamlines of the unperturbed mean 
flow and with those of the perturbed flow (2.6) at t = 0; (b )  the streamlines of the perturbed flow 
at t = x / 2 w  for E = 0.4. Kote that the lines x = 0. R are streamlines for all t ,  E. 

where integration of (2.7) gives 

sinz,(t) = sech[t+In(tan~z:,(O)}] and yo(t)  = 0 for all t. (2.9) 

This heteroclinic orbit exists because the unstable manifold e ( 0 , O )  of (0,O) and 
the stable manifold W0(7c, 0) of (K, 0) for the unperturbed system (2.7) coincide and 
equal the line segment y = 0, 0 < x < R (see figure l a ) .  Here the unstable manifold 
e ( 0 , O )  essentially means the streamline that leaves (0,O) and the stable manifold 
W0(n,O) means the streamline that goes into (x,O). 

For trhe perturbed system i t  is sometimes convenient to  consider not (2.6) but an 
equivalent autonomous system of third order, namely the suspended system 

dx 
dt 

= sin x cosh y, - I 
(2.10) 

where (z, y, 0) E [0, K] x R x S'. (Here S' = R/T is the circle of length T ,  and T = ~ K / W  

is the period of the oscillating flow.) We identify 0 with t by appropriate choice of the 
origin. A useful instrument to probe this system is the Poincard map P?: Ct0-+Zto 
defined by 

and 

Po= {(x,y,8)E[O,R]XRXS~:0= t 0 E [ O , T ) }  (2.11) 

Pfo: (x( to) ,  y(toL t o )  ++ (x(to+ TI, y(t0 + TI1 t o ) .  (2.12) 

This is effectively a stroboscopic map of the plane of flow which gives the new 
position of each fluid particle after a time T has elapsed. For simplicity we choose to 
set to = 0 : we may do this without loss of generality by changing the phase in (2.6). 

Now P: has invariant lines x = 0 and x = a. On x = 0, P," can be shown to be a 
contraction mapping. Moreover, since dlyl/dt < 0 on z = 0 wherever IyI 2 arcsinh 161, 
Pf maps the line segment Io = ((2, y) : x = 0, IyI < arcsinh 1 ~ 1 )  into itself. Therefore, by 
Banach's contraction mapping theorem (cf. Griffel 1981, §5.2), Pt has a unique fixed 
point po  in P whose position will vary with E .  Similarly, consideration of the inverse 
map (P:)-' on x = R shows that P," has a unique fixed point p ,  in the line segment 
I" = {(x, y):  x = R, Iy( < arcsinh [el}. When E = 0, po and p n  become the stagnation 
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points, (0,O) and ( R ,  0) respectively, of the unperturbed two-dimensional flow ; the 
unstable manifold ofp, is then identified with Wr;(O, 0) and the stable manifold ofp, 
with W ~ ( R ,  0). As we have seen, these coincide along y = 0. However, i t  turns out that  
when E + 0 the manifolds ?Po) and Wz(p,) of the fixed points of the Poincark map 
no longer coincide. Here w@,) is defined essentially as the curve along which points 
leave po by iteration of the map P,O, and K@,) as the curve along which points 
approach Ws@,) similarly (cf. Guckenheimer & Holmes 1986). Remember that in the 
unsteady flow these manifolds are distinct from streamlines a t  each instant. We shall 
next apply Melnikov's method to determine the separation of the manifolds and, in 
particular, to find whether they intersect transversely when E is small. 

Let x ,  E (0, R ) .  Also note that the normal to K(0,O) = WO(7c, 0) a t  (x,, 0) is the line 
x = x,. Then the distance d,(x,) between the intersections of ?@,,) and K@,) with 
the normal at (x,,O) is given by 

(2.13) 

where the Melnikov function M is defined by 

m 

M(Xrn) = I-, {uo(qo(t)) A ul(qo(t), t))*kdt,  (2.14) 

uo = Vq50, u, = Vq51, k is the unit vector parallel to the z-axis, and qO(t)  is that 
heteroclinic orbit of the unperturbed flow which passes through x = x, at t = 0. Thus 
M depends on x ,  through the initial condition for qo, i.e. through 

qo(O)  = (xmT O ) .  (2.15) 

For the system (2.6) we accordingly deduce that 

m 

M(x,) = I-m sin xo( t )  sin wt dt 

m 

sech t cos wt dt sin (o In (tan k,)) 
= -i, 
= - x sin {w In (tan h,)} sech ~ R W .  (2.16) 

This Melnikov function has simple zeros and so we conclude that the manifolds 
K@,) and K@,) intersect transversely (and do so a countable infinity of times near 
x ,  = 0 or R ) .  It also gives the distance function as 

a sin {w In (tan ix,)} 
sin x, cosh $rw 

+O(s2)  as E + O .  dAxm) = - (2.17) 

This agrees well with the separation between the manifolds found by integrating the 
system (2.6), even for values of E which are not small (we have used values E 5 10 for 
various values of w ) .  Figure 2 shows w@,) and R@,J for E = 3 and w = 4 to 
illustrate this; the Melnikov asymptotic calculations of e(p0) and T@,) to order E 

agree so well with the direct integrations of the system that they would be 
indistinguishable in figure 2. 

This is not just a formal piece of mathematics, for it is valuable in helping us to 
understand how particles are advected by the unsteady flow. All the fluid above the 
curve K(po) comes from near x = 0 and y = co, and all the fluid below comes from 
near x = 0 and y = - co ; also all the fluid above the curve W@,) goes to near x = R 
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FIUURE 2. The stable manifold W:(p.@,) (denoted by a continuous curve) and the unstable manifold w@,) (denoted by a broken curve) of the Poincard map when 6 = 3 and w = 4, i.e. when q 5 ( q  
y,t) = -coszcosh y+3ysin4t. 

and y = 00, and all the fluid below goes to near x = x and y = - 00. Thus fluid above 
both w@,) and W&) comes from and goes to y = 00 ; fluid below V(p,) and e@,) 
comes from and goes to y = - GO ; whereas fluid in the 'lobes ' between F@,) and 
Wz@,) comes from y = k GO and goes to y = T GO respectively, so it is the exchange 
of fluid in alternate lobes which makes up the transport across the separatrix of the 
basic flow, due to the oscillation (see figure 2). The area of a lobe can be calculated 
to order E by integrating the distance d,(x,) between two of its adjacent zeros (cf. 
Rom-Kedar 1989; Ryrie 1990). In  this flow we find, for each lobe, the area 

27CE 
o cosh ( ixw) 

A ,  = +0(s2) as s+O. 

The areas of all the lobes are exactly the same, owing to the incompressibility of the 
fluid and to the absence of a net flux from y = - GO to y = + GO. Then, when the 
boundary between the upper and lower regions is appropriately defined (cf. Ryrie 
1990), exactly one lobe of fluid is exchanged per period T of the flow, so that the area 
of fluid moving from the upper (or lower) region to the lower (or upper, respectively) 
region per period T is just A,. Thus the Melnikov theory provides information about 
the transport properties of the flow. 

To illustrate this exchange of fluid, figure 3 shows the second and fourth iterates 
of a line segment L = ((2, y) : x = 0.002, -5.1 < y < 4.0) under the Poincard map P,", 
again for E = 3 and w = 4. The figure does not show L itself because L would be 
indistinguishable from the y-axis. These iterates, then, mark the position of the line 
of fluid particles after two and four periods of the flow, i.e. after times x and 2x. The 
second iterate (P,O)'L shows that L has been 'sucked' towards w@J, for the flow is 
approximately that for the case E = 0 shown in figure 1. However, the fourth iterate 
shows (and subsequent iterates would show more dramatically) how the line segment 
becomes contorted near x = A, where W:(p,) straightens and weo) bends. Close to 
x = 0, the curve e@,) bows and intersects vertical lines a number of times (and, in 
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FIGURE 3. Iterates of the Poincar6 map on the line segment L = {(r,y): 2 = 0.002, -5.1 < y < 4) 
when E = 3 and o = 4. The stable manifold WE@,) of figure 2 is denoted by a continuous curve, the 
unstable manifold W:@,) by a broken curve, and the second and fourth iterates of L by chained 
curves. An enlargement of a detail, which shows the fourth iterate of L ,  i.e. the fluid particles of 
L after an interval 2a, is shown in the inset. 

fact, here intersects L six times). The invariance of Wf@,) ensures that each 
subsequent iterate intersects %(pa) the same number of times, as seen in figure 3:  
these intersections divide L into segments which are swept far upwards (or 
downwards) as t-tco according to whether they lie above (or below) Wf(p,). TheJlow 
is not chaotic but there is sensitive dependence of particle paths on initial conditions 
near the line x = 0. For, given any non-vertical straight line Lo throughp, there exist 
sequences (x,} where (i) x,EL, for n = 1,2,  ... and (ii) x,-+p0 monotonically as 
n+m, such that 

(n, $ 0 0 )  if n is odd 
lim ( P Z ) ~  x, = { ~~, 
m - m  - co) if n is even. 

In  short, neighbouring particles near x = 0 may be separated and swept in different 
directions to y = k near x = n, according to which lobes between the manifolds 
they lie in. Indeed, such a result is valid for most curves intersecting the line x = 0. 
This advection is chaotic in the sense of sensitive dependence on initial conditions, 
because points near po are scattered. (Recall that sensitive dependence on initial 
conditions is associated not just with exponential separation of neighbouring 
particles but also with the complicated nature of the boundary separating orbits of 
different qualitative behaviour.) 

This serves as a simple example of an effect whereby an oscillation of a flow advects 
some particles across a separatrix of the steady mean flow. The effect is an important 
element in the mixing of fluids, to which the irrotationality of the flow is not directly 
material. A realistic, but more complicated, example of this can be seen in the 
diffusion of fluid particles in the axial direction when there are wavy Taylor vortices 
between two rotating cylinders (Broomhead & Ryrie 1988). In this example the 
spatial periodicity of the flow and the existence of closed streamlines are essential 
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features of the mechanism of diffusion (cf. Ryrie 1990). However, irrotational flows 
without circulation do not have closed streamlines and so seem unlikely to lead to 
diffusion by means of chaotic advection. 

3. Waves in fluids 
We shall here make a few general remarks about chaotic advection due to waves 

in fluids, and then consider the case of the superposition of two Rossby waves in 
detail. It is well known that chaotic advection does not occur for two-dimensional 
steady flows, because the Poincarc-Bendixson theorem excludes the possibility of 
chaotic solutions of a two-dimensional autonomous differential system. This excludes 
chaotic advection by a wave which may be reduced to  rest in some two-dimensional 
frame by a Galilean transformation, and so by all the steadily propagating two- 
dimensional waves which figure so prominently in the literature of fluid mechanics. 
So we must consider two-dimensional waves which cannot be reduced to rest, and 
three-dimensional waves in order to  find chaotic particle paths. 

For a single wave propagating in a fluid we may choose a coordinate frame moving 
with the wave. Then the equation of particle paths takes the autonomous form 

dx - = u(x ) .  
dt 

We usually find the velocity field u by linearizing the governing equations of the flow, 
using the method of normal modes, and separating one or more of the space 
variables. This often yields u = (u, v, w) with two velocity components of the form 

44 = fC.1 SAY7 z )  and w ( x )  = f(4 Sa(Y, 4. (3.2) 

Important examples of such three-dimensional waves in a fluid are the baroclinic 
waves which model the large-scale instability of the winds in the middle latitudes 
(Eady 1949), and linear Rayleigh-Be’nard convection (cf. Lorenz 1963). For such 
flows 

on a particle path, and so z may be expre,ssed as a function of y and hence eliminated 
from the equation (3.1) of particle paths. This reduces the system to a two- 
dimensional one and so excludes the possibility of chaotic advection. A somewhat 
similar ‘non-chaos theorem’ follows when x, y, z represent any trio of curvilinear 
coordinates in any order. 

These results leave few examples in the literature of waves in fluids which may 
have chaotic advection. However, the results do not apply when two or more linear 
waves are superposed or there is a single three-dimensional nonlinear wave with 
higher harmonics such that the velocity field u(x ,  t) does not give integrable 
equations like (3.3). These flows are, of course, more realistic than a single 
monochromatic sinusoidal wave in a fluid. With this in mind, we choose an 
illustrative example of Rossby waves which model large-scale barotropic winds and 
ocean currents in middle latitudes. 

With a basic zonal (i.e. eastward) velocity Ui on the P-plane of Rossby, it is well 
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known (cf. Holton 1979, $7.5) that the basic flow and a Rossby wave have stream 
function $(x, y, t )  = - Uy + Re {A  ei(Bz+lu-wt)} for arbitrary complex amplitude A ,  real 
wavenumbers k and 1, and dispersion relation w = Uk- /?k / (k2+ l2 ) .  It is noteworthy 
that a single Rossby wave gives an exact solution of the nonlinear equations 
although linearization is needed in general to superpose Rossby waves. 

We shall suppose that the flow is bounded by rigid vertical walls along two latitude 
circles. This artifice is widely used in meteorology and may be justified as a model of 
waves that are evanescent a t  high and low latitudes owing to shear of the zonal mean 
flow (cf. Drazin, Beaumont & Coaker 1982). Using dimensionless variables, we take 
the equations of these circles as y = 0 , l .  For our example, we superpose two Rossby 
waves having 1 = n (for the lowest meridional mode), the first having real amplitude 
A and zonal wavenumber k = 2n (for the lowest mode) and the second having 
amplitude d and k = 4n (for the second zonal mode). We shall also make a Galilean 
transformation that reduces the first wave to rest. This gives w = 0 for the first wave 
and thence U = ,8/5n2: the dispersion relation for the second wave then gives w = 
48,8/85n. In all our numerical calculations we shall set w = 2n for the second wave, 
so that the period of the flow is T = 1,  and hence take ,8 = 85n2/24 and U = 17/24. 
Thus we consider the class of flows with 

$(x, Y, t)  = $o(% Y) +e$*(x, Y, t) ,  (3.4) 

where $.,(x, y)  = - Uy +A cos 27cx sin ny, $,(x, y, t) = A cos ( 4 ~ 2 -  wt) sin ny and e is a 
real parameter which we shall take to be small. Then $o represents a steady uniform 
flow and a wave, and $, a time-dependent wave perturbation. 

As in $2 the equations of a particle path are of the form 

and in detail they are 

dx 
dt 

= U- ITA cos 2 ~ 2  cos ny - ~zd cos ( 4 7 ~ ~ -  wt) cos ny, (3.6) 

(3.7) 

- 

- dy = - 2 n ~  sin 2nx sin ny - 4 n e ~  sin (4nx - wt) sin ny. 
dt 

Note that the two rigid boundaries, i.e. the walls y = 0,1, are invariant lines of the 
flow for all E .  Also the Eulerian velocity field has period 1 in x. Therefore we need only 
consider the domain of flow 0 < x, y < 1. We may identify x = 1 with x = 0 so that 
a particle leaving this domain a t  x = 1 reappears a t  x = 0, or vice versa; this 
corresponds to flow on a cylindrical surface, such as the surface of the Earth in mid- 
latitudes. Note that the system (3.6), (3.7) is invariant under the transformations 
T,: Z H X + + ,  y w l - y ,  twt++T, and T,: x ~ l - x , y + + y ,  t H  -t. 

Consider first the unperturbed flow, u,. When A < U / n  the zonal velocity 
dominates the first Rossby wave so that the component of the basic velocity in the 
direction of the channel, i.e. the x-component uo, is positive everywhere. However, 
when A > U / n  there are stagnation points and regions of recirculation. These regions 
are separated from the main stream by dividing streamlines, which, in the context 
of the theory of dynamical systems, are heteroclinic orbits. This is illustrated in 
figure 4 for A = l/n (> U/x = 171247~). There are six stagnation points in the flow, 
denoted by p l ,  p z ,  p3 ,  p 4 ,  c, and c2: of these c, and cz are centres and the rest are 
hyperbolic saddle points. The saddle points p ,  and p z  are joined by a streamline, ro, 



526 8. M. Cox, P. G. Druzin, S. C. Ryrie and K. Slater 

FIGURE 4. 

V 

Streamlines of the steady unperturbed flow (3.8) with U = 17/24, A = 
the heteroclinic orbit To. 

I/n, showing 

say: a streamline similarly joins p, and p4. We shall consider here the structure of 
ro and its fate under the action of the perturbation. Symmetry of the flow under 
the transformation TI implies that the streamline connectingp, andp, will be affected 
in the same way. 

As in $2, we note that the heteroclinic connection of the unperturbed system exists 
because the unstable manifold of p1 and the stable manifold of pz coincide, i.e. 
Kkl) = Wo(ps) = ro. Since = - U = 1cl0(p2), the equation of ro is given by 

cos 2nx = - U( 1 - y)/A sin ny. (3.8) 

It follows that the heteroclinic orbit is qO(t)  = (xo(t), y o ( t ) ) ,  where 

dy, dt = -2n{~2sin2ny,--(i-y,)*}f, (3.9) 

yo =I= I, and xo is determined from (3.8) after (3.9) is solved. As before, this heteroclinic 
orbit is broken by the perturbation. We shall explore this with the aid of the Poincar6 
map P,". : 20 + 20, where here 

zto = {(x, y, e) E x 1  x LO, 11 x $1 : e = to E LO, T)), (3.10) 

0 is the new variable in the suspended system, and the temporal period of the flow 
is T = 2nfw.  

The stagnation points of the flow are fixed points of the map P?. For sufficiently 
small e, there are corresponding fixed points of the map P); indeed we find 
numerically that, for w = 2n, /3 = 85n2/24 and U = 17/24, P? has two saddle points 
on each wall for 0 < E < 0.5646. We denote the two saddle points on the wall y = 1,  
by pi(€) = (xi(.), 1 )  f o r j  = 1,2.  Note that because (3.6) and (3.7) are invariant under 
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the transformation T,, the map P," has the symmetry P;(l-x,y) = (P,")-'(x,y). This 
implies that, on 2, x2(e) = 1 -xl(e). Let the unstable and stable manifolds be e@,) 
and y@,) respectively. It follows that e(pl) is the mirror image of K@,) in the line 
x = t .  Therefore if W(pl) intersects the line x = a  a t  some point, then T(p2) 
intersects it a t  the same point. Then v@,) and v@,) intersect a t  least a countable 
infinity of times. 

To determine whether the manifolds w@,) and K(p2) intersect transversely for 
small E ,  we adapt Melnikov's method of $2 to the present problem. Bertozzi (1988) 
has also applied Melnikov's method to similar flows, including Rossby waves, but 
with zero mean flux ; this corresponds asymptotically to the limit as A +oo, although 
we see that it is not possible to reduce the basic Rossby wave to rest and have no 
mean zonal flow U, and that the mean flow, however weak, changes the topology of 
the unperturbed flow, thereby separating the two regions of closed streamlines. 

Now, the Melnikov function can be expressed as 

M(x,(O), Y,(O), t o )  = ~c(xo(o)> YO(0)) cos (wto) +I , (ZO(O) ,  YO(0)) sin (wto), (3.11) 

W 
where 

I ,  = - n 2 ~ 2  J-m [4~(7ui)-1 sin (4nx0(t) - wt) sin nyo(t) 

-{$sin (27~2,(t)-wt) +$sin (6nxo(t)-wt))sin2ny,(t)]dt (3.12) 

and 

I ,  = n2A2 [4U(RA)-l cos (4nx0(t) -wt) sin nyo(t) r* 
-{$cos (2nxo(t)-wt)+~cos (6nxO(t)-wWt))sin2ny,(t)] dt. (3.13) 

This gives the distance d, between the intersections of the manifolds V@,) and 
Ku2) with the normal to r, at (xo(0),y,(O)) as 

€ ( I ,  cos wt, +I, sin at,) 

[P{1 +n(1 -y,(O)) cotny,(0)}2+4n2A2sin2nyo(0)-4n2~(1 -y0(0))2]i 
d, = + O(e2) 

as e + O .  (3.14) 

Provided I ,  and I ,  are not both identically zero, the manifolds cease to coincide when 
E 4 0 and intersect transversely on 2 3  near the values of (x,(O), y,(O)) a t  which the 
Melnikov function vanishes. Numerical calculations suggest that this proviso is 
satisfied generally. On setting x,(O) = i, we deduce that I ,  = 0 because the integrand 
is then an odd function of t ;  however, our numerical calculations suggest that in 
general I ,  0. Thus the manifolds intersect near x = 2 on 27' as anticipated. Parts of 
the manifolds computed for A = 1/n, and e = 0.01, are shown in figure 5. 

The similarity between the systems of $2 and this section is now apparent. The 
transverse intersection of the manifolds again leads us to deduce that the particle 
paths of the flow with the two Rossby waves are sensitive to initial conditions, with 
neighbouring particles near r, being quickly separated. However, here no particle 
may escape to infinity, so the chaos of some of the solutions of (3.5) can be seen with 
the aid of a Poinear6 map. For all E 4 0 there exist two chaotic regions associated 
with the broken heteroclinic orbits. For e not too large there are also regular 
solutions, which lie on stable toroidal surfaces in the phase space of (x, y, 6) .  These 
tori act as barriers to the trajectories of the chaotic solutions. In  particular, stable 
tori in the main stream form a 'zonal' barrier which separates the two chaotic 
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FIQURE 5. Stable Wz@,) and unstable W;@,) manifolds of the fixed points of the Poincar6 map P?, 
denoted by continuous and broken curves respectively, for U = 11/24, A = l/n: and B = 0.01. 

FIQURE 6. Two chaotic orbits and 14 non-chaotic orbits of P," for U = 11/24, A = l/x and 
E = 0.001; the starting points of the chaotic orbits were at x = 0.375, y = 0,9999, and x = 0.122, 
y = 0.00001, and 10000 iterates for each are shown. 

regions. Figure 6 illustrates these phenomena, showihg the iterations of a Poincare' 
map for several initial conditions when 8 = 0.001. Recall that if a particle is advected 
across x = 0 or x = 1 we use, for convenience, the periodic condition to plot it inside 
the square. 

In addition to the chaotic regions associated with the breakup of the heteroclinic 
orbits, KAM theory shows that for all 8 + 0 there are stochastic layers due to the 



Chaotic advection of irrotational flows and of waves 529 

FIQURE 7 .  Chaotic orbits of P: for U = 17/24 and A = l / x ;  10000 iterates of each of two orbits in 
the unit square of the (5, y)-plane are shown for each of the following cases: (a) E = 0.005, 
(b) E = 0.05, (c) E = 0.06, (d )  E = 0.4. 

breakup of resonant tori, i.e. tori with rational winding numbers. For example, 
consider a torus with winding number lln, where n is some positive integer. The 
perturbation destroys all but an even number of the periodic orbits on the torus, 
thereby breaking the torus. Half of the preserved periodic orbits are of elliptic-type 
stability : the n points defining each orbit on the Poincar6 map are each surrounded 
by islands of closed curves. The remaining preserved periodic orbits are of saddle- 
type instability, and have associated stable and unstable manifolds. These manifolds 
are confined between neighbouring irrational tori, which are preserved for sufficiently 
small e. Generically, these manifolds intersect transversely an infinite number of 
times; as do the perturbed manifolds associated with a heteroclinic orbit, so forming 
a chaotic layer. As e is increased, the tori with irrational winding numbers are also 
destroyed and neighbouring chaotic layers merge. Then the volume of phase space 
accessible to a single chaotic solution will suddenly increase. 
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Figure 7 (a )  for E = 0.005 illustrates this : a chaotic solution, whose initial point is 
in the heteroclinic tangle, wanders over two surrounding layers which have merged. 
Consider the upper chaotic region. The unperturbed system contained two resonant 
tori near fa with winding number t ,  one just inside ro winding around c,, the other 
in the main stream just outside f,. The perturbation breaks these tori and forms 
stochastic layers, leaving just two period-two orbits associated with each torus. The 
islands surrounding the two points defining the elliptic-type orbits on the Poincare' 
map are clearly visible in the figure. Those associated with the breakup of the 
enclosed resonant torus lie across the line x = t ,  while those associated with the outer 
resonant torus lie near the main stream symmetrically on each side of x = $. The 
symmetry of the system under the transformation T, implies that corresponding 
structures occur in the chaotic region associated with the lower heteroclinic orbit. 
Similarly, figure 7 ( c )  shows the islands and saddle points associated with the breakup 
of zonal tori with unit winding number. 

As E is increased further, the chaotic region accessible to a single orbit grows 
as successive stochastic layers merge. Finally, the last zonal barrier is broken, a t  
E z 0.24 for the parameter values used in our numerical experiments, and the upper 
and lower chaotic regions merge. However, as is shown in figure 7 (d ) ,  a single solution 
may still not have access to the entire phase space because some islands of tori 
remain. 

Another important feature of the flow, which is evident from our numerical results, 
is the presence of 'cantori'. These are Cantor sets which are invariant under P:; they 
form partial barriers in the chaotic regions of phase space. The theory of Hamiltonian 
systems shows that cantori appear, replacing invariant tori which form complete 
barriers, when a twist map is perturbed (Katok 1983). Our unperturbed map I?$ can 
be thought of as three twist maps patched together along ro and along the image of 
ro under T, ; one in each region of recirculation, corresponding to twist maps on discs 
around the points c, and c2 ; the third in the area of free flow, corresponding to a twist 
map around the circumference of a cylinder. So it is not surprising that cantori occur 
in our model flow. Moreover, since this application of twist maps does not depend on 
the details of the model, we anticipate that cantori will occur generally for Rossby 
waves and impede the spread of chaotic orbits. 

For example, the heteroclinic tangle and the period-one stochastic band merge for 
some value of E between 0.05 and 0.06. When E = 0.05 (figure 7 b )  invariant tori form 
a zonal barrier between the two chaotic regions. When E = 0.06 (figure 7 c )  the regions 
have merged, yet a partial barrier exists in the region previously occupied by the 
tori ; the evidence for this is that an orbit starting in the region of the stochastic band 
takes a long time (about 1000 iterations) to penetrate the region of the heteroclinic 
tangle. The approximate position of the cantorus is shown, by the sudden change in 
density of points, in the upper orbit of figure 7 ( c ) .  

We return now to the properties of the transport of particles by the Rossby waves; 
qualitatively similar flows have been studied by Weiss & Knobloch (1989). The 
chaotic orbits appear to be stochastic, so it is interesting to investigate the existence 
of an effective diffusion coefficient D for particles moving within a given chaotic 
region. To do so, we no longer regard the flow as being confined to a cylinder, but 
allow .?: to take all real values, so that particles may be advected along an infinite 
channel. Using well-known ideas in the theory of longitudinal dispersion, we 
calculate 

where xo is the initial coordinate of a particle and xt is the coordinate of the particle 

D, = C ( 1 2 0 - " t f 2 ) - ( ( 2 0 - X t ) ) 2 ) / 2 t ,  
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FIQURE 8. The graphs of D, and Do, versus t for particles in the upper chaotic region for two 
Rossby waves when U = 17/24, A = l/a and E = 0.05. 

at time t. The averages, denoted by ( ), are taken over an ensemble of initial 
positions within a given chaotic region. We have computed D, for the region of the 
heteroclinic tangle which lies near the unperturbed orbit r,,. The initial positions of 
lo00 particles were chosen at random in the chaotic region. The paths of the particles 
were then followed for 4000 time periods of the flow, and D, was computed for 
t = T ,  2T, .  . . , 4000T. Some typical results are shown in figure 8. 

For a diffusion-limited process there exists limt+mD, = D, say, the diffusion 
coefficient. This behaviour has been observed in a model of wavy Taylor vortices 
(Broomhead & Ryrie 1988), which is analogous to our problem with zero mean flow. 
However, our calculations for the Rossby waves with non-zero mean flow show that 
D, increases apparently without limit as t-too. This is akin to the behaviour of a 
simple shear flow, for which D, - t as t + a .  Indeed, Weiss & Knobloch (1989) 
attribute this anomalous behaviour to the presence of shear in the main stream. This 
is a plausible interpretation of our results also. Particles alternate intermittently 
between being carried along with the main stream and being trapped in the regions 
of recirculation. Thus we might expect D, to be less than Do, for all t ,  where Do, is the 
value of D, computed for the same initial conditions as D, but with E = 0, i.e. the 
value when the particles are advected downstream by the first Rossby wave alone. 
This appears to be so in all the cases we have studied. We conclude that the 
perturbation causes mixing of fluid within a (restricted) chaotic region, and retards 
the downstream transport of the fluid in that region. 

4. The combination of chaotic advection and molecular diffusion 
We have hitherto regarded particles as passively moving with the fluid. However, 

in interpreting the results of chaotic advection, it must be recognized that solutes 
diffuse and solid particles move relative to the fluid locally. Khakhar & Ottino (1986) 
have considered the mixing of fluid by stretching in chaotic advection, and Aref & 
Jones (1989) have broached the issue of the separation of diffusing particles by 
chaotic advection. Here we examine further the combination of the effects of chaotic 
advection and molecular diffusion on the transport of a solute such as a dye in a real 
fluid, using order-of-magnitude estimates. Consider first the stretching and folding 
mechanism essential to chaotic advection, illustrated, for example, in figure 3. The 
mechanism corresponds to the existence of a horseshoe in some iterate, say the pth, 
of the Poincare' map (cf. Guckenheimer & Holmes 1986 ; Bertozzi 1988). Thus the flow 
stretches and folds a blob of dye into layers of discrete filaments. The distance 
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between adjacent filaments decreases by a factor of, say, p > 1 after each iteration 
of the horseshoe map. Thus after a time npT the separation of filaments is 

6 % Lp?, 

where L is the diameter of the region (and n is not so small that  the size of the blob 
is important). Now molecular diffusion will smear adjacent filaments together 

6 5 (KnpT);, provided that 

where K is the coefficient of molecular diffusivity of the dye in the fluid. Therefore, 
the filaments will merge, and the dye will be uniformly diffused in the chaotic region 
after a time of order of magnitude t ,  where 

i.e. 

(p!T) (K:T)~ 
2t 

-lnp+ln - k l n  - 
PT 

2t 

approximately, when the PBclet number L2/KpT, and therefore t /pT,  is large. Note 
that L,  p and T depend on the kinematics of the flow, and K upon the dye and the 
fluid. 

Thus chaotic advection, with its exponentially rapid dispersion by stretching and 
folding, enhances molecular diffusion so powerfully that dye will spread rapidly 
throughout a chaotic region unless the PBclet number is very large indeed. Moreover, 
the time for the dye to  spread uniformly over the chaotic region is insensitive to the 
diffusivity of the dye (because of the logarithmic dependence on the PBclet number). 
This phenomenon was observed experimentally by Solomon & Gollub (1988), who 
found rapid diffusion whatever dye or liquid they used in oscillatory two-dimensional 
Rayleigh-Be'nard convection. 

5.  Conclusions 
The example of $ 2  proves the point that  an unsteady potential flow may admit 

chaotic advection. It also illustrates very simply the kinematics of fluid transport 
across a separatrix of a steady flow owing to  chaotic advection induced by an 
unsteady perturbation of the flow. These kinematics gain importance in the context 
of periodic flows such as wavy Taylor vortices, oscillatory Rayleigh-Be'nard 
convection or waves in fluids. The example of $ 3  shows how this behaviour can lead 
to mixing of the fluid in a given chaotic region of the flow. A practical implication 
of this is that if a pollutant (e.g. radioactive particles) is released instantaneously at  
a point in a chaotic region then there is mild pollution by fallout over a large area, 
whereas if i t  is released a t  a point elsewhere (i.e. a t  an invariant point or an invariant 
curve of the Poinear6 map) then there is intense pollution over a small area. 

The Melnikov theory has been used to demonstrate the origin of dispersion in the 
examples of oscillating flows. It predicts the separation d, of the manifolds, and 
thereby the flux of fluid across a separatrix of the flow owing to the periodic 
perturbation. Thus it is useful not only in asserting the chaotic nature of the flow but 
also in finding approximations to the transport properties. 

The important feature which leads to chaotic advection is the breaking of 
heteroclinic orbits. Their structural instability suggests that they are broken by most 
perturbations of the steady basic flow in which they arise. Then there are two 
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possibilities : either the perturbed manifolds do not intersect, or they intersect a t  an 
infinite number of discrete points. The latter property leads to chaotic advection, as 
our calculations exemplify. However, we now see that this is a natural consequence 
of the incompressibility of the fluid. For consider a closed region of recirculation in 
the unperturbed flow of $3. There is no flux into this region; in particular there is 
no flux across the streamline r,. In the perturbed Aow there can be no net flux across 
any curve C joining the saddle pointsp,(e) andp2(e). Note also that there can be no 
net flux across any segment of the perturbed manifolds e@,) and R(p2). Therefore 
if we take C as following K(pl) near p l  and v@,) near p z ,  the two manifolds 
intersect a t  least once in the interior of the flow. Similarly, in the irrotational flow of 
$2 there can be no net flux of fluid in the y-direction provided the perturbation does 
not introduce additional sources or sinks. Thus there is no net flux across any curve 
joining the (horizontal) line of saddle points, so again the perturbed manifolds are 
constrained to intersect. This shows that chaotic advection occurs quite generally in 
flows with saddle-type stagnation points. 
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